بهینه سازی خطی پیشرفته 1
مطالبی را که در این درس مطالعه می کنیم به شرح زیر است.
مطالبی را که در این درس مطالعه می کنیم به شرح زیر است.
CONTENTS
ONE: INTRODUCTION 1
1.1 The Linear Programming Problem
1.2 Linear Programming Modeling and Examples
1.3 Geometric Solution
1.4 The Requirement Space
TWO: LINEAR ALGEBRA, CONVEX ANALYSIS, AND
POLYHEDRAL SETS
2.1 Vectors
2.2 Matrices
2.3 Simultaneous Linear Equations
2.4 Convex Sets and Convex Functions
2.5 Polyhedral Sets and Polyhedral Cones
2.6 Extreme Points, Faces, Directions, and Extreme
Directions of Polyhedral Sets: Geometric Insights
2.7 Representation of Polyhedral Sets
THREE: THE SIMPLEX METHOD
3.1 Extreme Points and Optimality
3.2 Basic Feasible Solutions
3.3 Key to the Simplex Method
3.4 Geometric Motivation of the Simplex Method
3.5 Algebra of the Simplex Method
3.6 Termination: Optimality and Unboundedness
3.7 The Simplex Method
3.8 The Simplex Method in Tableau Format
FOUR: STARTING SOLUTION AND CONVERGENCE
4.1 The Initial Basic Feasible Solution
4.2 The Two-Phase Method
4.3 The Big-M Method
4.4 How Big Should Big-WBe?
4.5 The Single Artificial Variable Technique
4.6 Degeneracy, Cycling, and Stalling
4.7 Validation of Cycling Prevention Rules
FIVE: SPECIAL SIMPLEX IMPLEMENTATIONS AND
OPTIMALITY CONDITIONS
5.1 The Revised Simplex Method
5.2 The Simplex Method for Bounded Variables
5.3 Farkas' Lemma via the Simplex Method
5.4 The Karush-Kuhn-Tucker Optimality Conditions
SIX: DUALITY AND SENSITIVITY ANALYSIS
6.1 Formulation of the Dual Problem
6.2 Primal-Dual Relationships
6.3 Economic Interpretation of the Dual
6.4 The Dual Simplex Method
6.5 The Primal-Dual Method
6.6 Finding an Initial Dual Feasible Solution: The
Artificial Constraint Technique
6.7 Sensitivity Analysis
6.8 Parametric Analysis